Three-dimensional two-color dual-particle tracking microscope for monitoring DNA conformational changes and nanoparticle landings on live cells
Published in ACS Nano, 2020
Here, we present a three-dimensional two-color dual-particle tracking (3D-2C-DPT) technique that can simultaneously localize two spectrally distinct targets in three dimensions with a time resolution down to 5 ms. The dual-targets can be tracked with separation distances from 33 to 250 nm with tracking precisions of ā¼15 nm (for static targets) and ā¼35 nm (for freely diffusing targets). Since each target is individually localized, a wealth of data can be extracted, such as the relative 3D position, the 2D rotation, and the separation distance between the two targets. Using this technique, we turn a double-stranded DNA (dsDNA)-linked dumbbell-like dimer into a nanoscopic optical ruler to quantify the bending dynamics of nicked or gapped dsDNA molecules in free solution by manipulating the design of dsDNA linkers (1-nick, 3-nt, 6-nt, or 9-nt single-strand gap), and the results show the increase of kon (linear to bent) from 3.2 to 10.7 sā1. The 3D-2C-DPT is then applied to observe translational and rotational motions of the landing of an antibody-conjugated nanoparticle on the plasma membrane of living cells, revealing the reduction of rotations possibly due to interactions with membrane receptors. This study demonstrates that this 3D-2C-DPT technique is a new tool to shed light on the conformational changes of biomolecules and the intermolecular interactions on plasma membrane.
Recommended citation: Liu, Y.-L., Perillo, E. P., Ang, P., Kim, M., Nguyen, D. T., Blocher, K., Chen, Y.-A., Liu, C., Hassan, A. M., Vu, H. T., Chen, Y.-I., Dunn, A. K., & Yeh, H.-C. (2020). Three-Dimensional Two-Color Dual-Particle Tracking Microscope for Monitoring DNA Conformational Changes and Nanoparticle Landings on Live Cells. ACS Nano 14(7) 7927ā7939. https://doi.org/10.1021/acsnano.9b08045 https://pubs.acs.org/doi/abs/10.1021/acsnano.9b08045